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Abstract

We consider a nonlinear regression model for which the variances depend
on a parametric function of known variables. We focus on estimating the var-
iance function, after which it is typical to estimate the mean function by
X weighted least squares. Most often, squared residuals from an unweighted
least squares fit arc compared to their expectations and used to estimate the var-

iance function. If properly weighted such methods are asymptotically equiva-

2 lent to normal-theory maximum likelihood. Instead, one could use the devia-
L tions of the absolute residuals from their expectations. We construct such
‘ an estimator of the variance function based on absolutc residuals whose asymp-
) totic efficiency relative to maximum likelihood is precisely the same for sym-
. metric errors as the asymptotic efficiency in the one-sample problem of the
mean absolute deviation relative to the sample variance. The estimators are
- computable using nonlinear least squares software. The results hold with min-
imal distributional assumptions.
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1. Introduction

Consider a possibly nonlinear regression modcl in which the variance
of the responses are not constant, but arc parametric functions
of predictor variubles. More specifically, we have independent observations

Yl’ Yz,..., YV following the mecan-variance model

EY. = £(x.,%)
i i

(1.1)

Variance (Yi) = £ h(zi,ﬁ) .

In (1.1), {xi,zi'L arc fixed constants, 3 is the vector regression parameter,
* 1s a vector of q components, f is called the regression function and h is
called the variance function. See Judge, et al. (1985, Chapter 11} for
recent theoretical discussion of this basic heteroscedastic regression model,
and Montgomery 4 Peck {1982, pages 99-104) for a simplc example. If the
structural parameter : were known, redefining Yi* = Yi/hl/:(:i,él and

1/2

f f:l,x.,?) = f(xi.F)/h (zi,e) would yield a homoscedastic regression

model which can be it by one's favorite method.

We are interested in the casc that the structural paramcter ™ s

unknown. Given an estimate © of ©, the usual device for cstimating the

regression parameter - is simply to pretend that © is known and equal to
y , and then proceed as in the previous paragraph. The resulting estimate of
will be called generalized lcast squares. It is one of the great foiklore
thecrems o sratistoos which assures s that for e<tamating Loat oreal
-
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does not matter how we estimate ¢, at least asymptotically. More precisely,
for large sample sizes the limiting distribution of generalized least
squares is the same as if & were known.

Despite the folklore asymptotics, as intuition would indicate for finite sam-
ples how one estimates & really matters. Williams (1975) statés that "both
analytic and empirical studies of a variety of linear models indicate that
... the ordering by etficiency of (estimator of ) ... in small samples is
in accordance with the ordering by efficiency (of estimates of €)". In
the linear model, Toyooka (1982), Rothenberg (1984) and Kariya (1985) all
essentially show that for normally distributed data, the second order
covariance matrix of generalized least squares is a monotonically increasing
function of the covariance of the estimate of o; see also Freedman & Peters
(1984) and Carroll § Ruppert (1985) for similar results. Finally, especially
the Monte-Carlo study of Goldfeld & Quandt (1972, pages 96-120) shows that
it is possible to construct a disastrously incfficient generalized least
squares c¢stimator as well as quite an efficient one.

The purpose of this paper is to compare various estimators of & by asymptotic
efficiency. Without making any further assumptions than the minimal (1.1), it is
pussihle to construct consistent and asymptotically nommal estimates of ~ with the

following '"algorithm'':

1) Estimate ~ . obtain é;

4

tlo0y 2y Form squared residuals ri° = {\i~f(xi,:)}";
(5) Estimate v by a function of the squared residuals.
Three common methods have been proposed, see tlildreth & Houck (1976),

Amemiva (1977), Dent § Hildreth (1977), Jobson & Fuller (1980), Goldfeld &

Quandt (1972), Harvev (1976} and Theil (1971, among others. The first
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method is based on pretending that the data are normally distributed, in which

case we can compute the maximum likelihood estimator éML' If 8 in (1.2) is

the maximum likelihood estimator, then ;’Ml solves
( 3 )
5 N r.” ( i
(1.3) 0o=NY2 3 ! T
i=1 [ £ h(z,,8) j { € v () |

where

v. = Vv.(2) = TS log h(zi,%).

Actually, the asymptotic distribution of solutions to (1.3) remains the

same if the estimator of 2 satisfies

—

(1.3)  NY%@g) - 0, (1),

‘,‘ .
a fact sketched in the appendix. The logic of (1.3) is that Er; = gh(zi,e). The
other methods are also based on the idea that gh(zi,ﬁ) is approximately the cxpec-
tation of squared residuals, secc Jobson & Fuller (198C). For simplicity of presen-
tation, we will ignore the asymptotically negligible bias in the squared residuals

A

due to leverage. The unweighted estimate 91% minimizes on (7,¢)

e

P4

3 Al
(1.5} [ S WAV R
i=1 ! 1

while the weighted estimate GWLS minimizes in (7,7)
2

Ay Dyl
{ri - h(zi,f.’),- /h (A.i,j

(1.6) ).

W r~12Z

LS
i

i
This last estimator is motivated by the idea that the variance of squared

o ‘ . ‘ ]
residuals is approximately proportional to h (zi,“), so that some sort of

weighting ought to be employed. Also note that differentiating (1.6) yiclds
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N f rf 1 hz(zi,é)
0 = z ~  ~_  ° 1 ~ ~ ——2—_—1—_— ’
i=1) Btz B, D] ndg)

which differs from the likelihood equation (1.3) only by the ésymptotically

negligible factors [h(zi,e)/h(zi )]2. In Theorem 1 of the next section, we

’eLS
investigate these three estimators of 6, proving that (1) for all three the
estimate of 3 is immaterial asymptotically as long as (1.4) holds; (2) maxi-
mum likelihood 8ML and weighted squared residuals éWLS have the same limit
distributions; and (3) both gML and BWLS are asymptotically more efficient
than using unweighted squared residuals via éLS' These results are obtained
essentially independently of the underlying distribution.

Squared residuals are skewed and lung-tailed. For this reason,
Cohen, et al, (1984) suggest the use of absolute residuals, although they
use absolute residuals only as one part of their algorithm and eventually
use squared residuals. For the special case that Variance (Yi) = g(Zi,e) =

rﬁ)z, apparently for computational reasons Glejser (1969) and Theil

(Z.
1
(1971) also propose use of absolute residuals. Such use requires a further

assumption, namely that

- - . S Y24
(1.7 E‘Yi' f(xi..)| = h (zi,e).
Effectively, (1.1) and (1.7) require that

Y, - f(x.,38)
i (191

11.8) . =
YOG ezt

be independent and identically distributed, an assumption we shall make
from now on.

3 Mimicking (1.5) and (1.6), one can construct two estimators of & based

on absolute residuals. Noting from (1.7)-(1.8) that absvlute residuals

have approximate expectation n (zi,e) and variance proportional to

h(zi,u), the unweighted absolute residual estimator 2, minimizes in (-,8)

AV

g T VEEEE R-B R T B YRS . T -
.
.

N 1/2 2
(1.9) Y firoiem Tz, 8)
. 1 1
i=1
e Bt A e e IR : : . -
- (R TN n - R o % - - PN <~ ¢
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while the weighted version OWAV minimizes :s
z N 1/2 2 ~ o
» [ ow B . ‘
\ (1.10) z {ir;l-h (zi,G)} /hiz,,8,,) - ¥
, i=1 :‘
; 8
N For the special case that the standard deviation is linear in :
1 . ;
' exogenous variables, Judge, et al. (1985) propose our general absolute ::
" . N
. fod
. residual estimators. Even in this special case, they state that the oy
) .,::

properties of éAV and §WAV "have not been fully investigated". In their
specific context, they go on to make in effect three conjectures:
(a) Absolute residual estimators of 0 are not affected by the method

of estimating 3, as long as (1.4) holds;

. (b} Weighted absolute residuals éWAV are more efficient than not tg
o . (]
., ~ *
- weighting and using eAv; :’
(¢) If we define N
.. § = Var(ie ) o
. »
- 2 9
.. « = Var ( € ) . \‘
o -~
: %
‘ 4

then in the light of Theorem 1 the asymptotic relative efficiency

A

of the weighted absolute residual estimator & with respect to

WAV Ea

E maximum likelihood éML or weighted squared residuals §WLS is :;
T (1.11)  2U=f) =
: 48 i
5 In this paper, we verify all these conjectures when the errors (1.8) is
n

- are symmetrically distributed. In Section 3, we discuss why it is that, for ~
,S ithis special case, using absolute residuals may be preferred when viewed 35

E from a perspective of efficiency robustness. :EE
A

- .
- .
y -
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We also show that conjecture (a) and hence conjecture (c) are
false in general for asymmetrically distributed errors. While the
dependence of the asymptotic distribution on the estimate of 2 certainly
complicates the theory, the dependence does not disqualify using absolute
residuals. We exhibit a simple example for which using absolute residuals
is always more than twice as efficient as using squared residuals.

The theorems are stated in the next section, with proofs in the
appendix. In the third section we discuss the statistical implications

of the results.




A
4
N,
»
7
=
\ t
! o
o
N
2. Major Results .
3 H
. We state the results somewhat informally and in the appendix only sketch -4
. b
! the proofs, relying for the most part on simple Taylor serics expansions and k '
L)
] ':
! the somewhat more complex lincarizations in Ruppert & Carroll (1980) and Carroll ;;
&}
b : iret o 1 3 s I c o ¢
| & Ruppert (1982). We first consider the estimators ‘MLY CLS and WLS i?}
’ based on squared residuals. Under minimal assumption such as (1.1) and Ej{
(1.4}, these estimators are consistent and asymptotically normally Eti
distributed with asymptotic covariance unaffected by the choice of §. -
’ The covariance simplifies if the errors (1.8) are independent and identically -i?
5 distributed, an assumption we will make throughout. Define 'if
N
., = = - - T.-1 .
. = (N b - - . S
: ZML N L (v1 v)(vi v) . o
- 1=1 o
‘-.I
Theorem *1. Under (1.4) and furtner regularity corditions, maximum 1ikeli- o
: hood 5y and weighted squared residuals ﬁWls have the same asymptotic o
: distributions, with :j:
- :-‘f:‘
. '
Lo P e
N 3-8 = N
_ (Cyg-%) (0,2) .
. 1/2 . A :‘:':
. N £ 5,
: Gy NCO Ly ) s RN
'é N
. A
. " J " . . . . . . aaras
where " == ' means convergence in distribution. Further,unwcighted squared
residuals satisfies ‘;
;‘1 :,,_ S = \(0 Z ) \-'—-
. DR K RS R
: where Ilg iy :::;
: =
3 2
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Thus, Theorem *1 ussures us that we should weight the squared residuals
Yor greatest asymptotic efficiency, at least when the errors are independent
and identically distributed. The next result relates to the case of
symnetric errors (1.8), thereby proving the three conjectures of Judge,

et al. (1955) in this special case.

theorem #2, Suppuse that the errors {1.8) are symmetrically distributed
with a distributicn function which is cortinuous in a neighborhood of zero.

dnger (1.4 and further reguiarity conditjors,

TN . .
i v - == ) o A )
\1 \ .’\‘\' ) VLU, YAV;
and
G0 = N,
WAV MAV
Further, [WAY E-LAV . and
13
Liny = ———— L. .
kav © T ML

If the errors are not symmetrically distributed, absolute residual
estimation of 2 is affected by how one estimates R, see Carroll & Schneider

{1985} for a similar cxample of this phenomenon. Define
v o= Pri. 0} - Pr(e <« 0).

Recall that, by assumption, € is a vector of q components. Define the

matrices

N 1 .
¢, =N S o1, pvil/z)hp’l(:i,e)
P i=1 | » \i/l j
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f(xi’t’) = ﬁ' f(xl’e) ‘::-.
ok
e = (0(gx1) Iq) ’ -,
s, .
. where Iq is the qx q identity matrix. Finally, define 5@
. ( 1) =
£, = i J il
‘ n vi/z ot
f Theorem #3. Under (1.4) and further regularity conditions, we have the :;i
' asymptotic expansions ot
1/2 2 ol
I R N
N
, [5,1/2 NY2 5 ne.,8)(le. |- EleDi. ] N
s 1 1 1
. -1 i=1 _
Fo =€ CZ*' { :\"
- | 1 N 1/2 .T 1/2, 4 e
, Doy N T e Rz, 00 (x,,BINT T(B-8) ! "
- L i=1 1 1 1 J oy
4 r~
) i
and )
: N By o
N .
) 1/2 2 )
! bgl/2 -t/ } (e, -Ele]) : a
. -1 J i=1 !
X =eC,, { 5
: T R 1/2 .T 2,5 L
3 R IR e C L S PO L GOl )
. { . i i i e
4 1=1 N
‘o ‘.’q-
L 4%
Theorem #2 is a corollary of Theorem #3 because, under symmetry, y=0 -
and the effect of £ disappears. In general, when v #0 éAV and 6WAV are iﬂ:
still asymptotically normally distributed, but their covariance matrices ig

will depend on the method used to estimate B. o
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3. Discussion

In Section 2, we have shown that for estimating
the structural parameter 6 in the variance function, normal theory maximum
likelihood is asymptotically equivalent to weighting squared residuals and
applying a nonlinear lecast squares algorithm. This result holds essentially
independently of the underlying distributions of the errors {ei} in
(1.8), which need not even be identically distributed. If the errors are
identically distributed, then both methods are asymptotically more efficient
than ordinary lcast squares. In practice, this means that if
computing maximum likelihood is inconvenient as in Froehlich (1973) or Dent
& Hildreth (1977), then in fitting squared residuals one ought to
weight.

We have also shown that, if the errors (1.8)
arc independent and identically distributed symmetric random variables,
then by appropriate weighting one can construct an estimator §WAV which
has asymptotic efficiency (1.11) relative to maximum likelihood éML and

weighted squared residuals €, For symmetric distributions, in one

X
sample problems (1.11) is the asymptotic rclative efficiency of the mean
absolute deviation with respect to the sample variance, see Huber (1981,
pages 2-3}. For normally distributed data, using absolute residuals is

12% less efficient than using squared residuals. However, for the longer-
tailed double exponential distribution, using absolute residuals is 25%

more efficient. Huber (1981, page 3) presents an interesting computation

ot (1.5) for the class of contaminated normal distributions

(1- (el + i (e/3),
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where ¢ is the normal distribution function. This distribution arises

when a random fraction a of clean normally distributed data is contaminated
by normal data with three times larger standard deviation, and it is
commonly used in robustness studies. The relative efficiency of absolute

values as a function of the contamination fraction « is given as follows:

o Relative efficiency

0.0 87.6%
0.001 94, 8%
0.002 101.6%
0.01 143.9%
0.05 203.5%

Huber calls these numbers ''disquieting', noting that just 2 "bad" observations
in 1000 suffice to offset the superiority of squared over absolute residuals
when estimating the variance function,

If the errors are symmetrically distributed or nearly so, then robustness
of efficiency considerations strongly suggest using weighted absolute residuals
to estimate the variance function rather than weighted squared residuals
or normal theory maximum likelihood. Computation is not intrinsically

difficult since it is based on the usual nonlinear least squarcs methodology.

The residuals are defined through an estimate of the regression paramcter

R. The estimation of the variance function using squared residuals is
asymptotically unaffected by the estimate of 8. The same can be said for
absolute residuals only when the errors are symmetrically distributed. Clearly,
the use of absolute residuals is complicated and more rcsearch is needed in

this direction. That further research may be quite useful is seen in thc following




example. Let {Ni} be independent and identically distributed negative
exponential random variables with mean one. Consider the model of hetero-

scedastic regression through the origin,

- . - 9.1/2
Y. =x. B {¢ Xy }

i (W,-1) .

In this case, v = 9, V= log xi and writing
N 2

2 (V i '\7) ’

i=1

Var(v) = N1

normal theory maximum likelihood satisfies

A .4
NI/Z(GML-G) => N{0,9.0/Var(v)).

When U= 2, simple calculations show that the estimate of ? does not matter
and that

1/2

N By ®) < N(0,3.4/Var(v)) .

Writing

we find that if ¥ is any generalized least squares estimate, then from the

appendix,

2 )
1/2,; 3.4, 237 by |

var(v) (Var(v))2 a

0 |




F TR T PR T N W

SFREFT IV F TR TR TS TRV VLT O U T LY I T TR T T Ty

13

indicating the asymptotic superiority of using absolute residuals as long

as

2 < 2.36 a, Var(v)

(3.1) by’ < 0

By the Cauchy-Schwarz inequality, bo2 < a Var(v) and from (3.1) we see that
using absolute residuals will always be more than two times as efficient as

thc MLE or squared residuals.

The point of the previous example is that absolute residuals estimation
of 9 should not be automatically dismissed simply because it has an in-
convenient asymptotic theory under asymmetric errors. As long as one can
reasonably make the crucial assumption (1.7), using weighted absolute
residuals to estimate the variance function should be given serious
consideration. However, further research is needed to help the statistician
choose between using weighted squared or absolute residuals when asymmetry
is present.

We have confined our discussion to weighted least squares estimation
of B and absolute versus squared residuals for estimating the variance
function. Our techniques apply to other methods, including using weighted
logarithms of squared residuals and the robust estimation schemes of Carroll

& Ruppert (1982) and Giltinan, Carroll § Ruppert (1986).
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Appendix

Proofs of the main results

To keep this section somewhat self-contained, there is some redundancy

with the text. Let & be any estimator satisfying
(A.1) N2 =0 ().

P
Let {ai} be any sequence of constants. Define

r, = Yi-f(xi, 3)

i
_ _ - - 1/2
s; = Y, -f(x;, B) { Eh(z,, 8)} ey
vy = Pr(c > 0) - Pr(£<0)
c; = j@ f(xi,S) = f(xi,S)
. 1/2
= ¢ }
bi ai{ < h(zi, g) )
= - 1-1/2
di ci{«,h(zi,e), .
Lemma #1. Under regularity conditions,
N N
- - i
(A.2) N1/2 Y airi2 - 12 1 aisi2 + 0 (D)
i=1 i=1 P
Proof:
This follows because
N Bl
N A ai(r.L- siz)
i=1 :
N
-1/2 * , : 2
= N - Y - )}
:\ ’L ai1f(3\i, .2) f(xly );
i=1
-172 N . 1/2 . ,
-2 N L :‘.{ ['h(z ’ )] [f(X,. :‘)'f(x ’ D)]}
, i i i
i=1
p

-
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by Taylor series, (A.l) and the fact that E¢=0. From (A.2), we see o
[ N 4
N that in computing estimates of § based on squared residuals, it is “
sufficient to do the asymptotic distribution theory assuming o is known. o

) ::
:: Proposition #1. 1If the distribution function {si} is continuous at zero, -
5 . ~
\ its mean, then A
: 1im Nl/2 E{ {z-v/Nl/Z’ - el = —vy : ._&
L] N ¢ :-T‘
i -
Y .
4
N Proof: Routine. -
:
- Lemma #2. Make the assumption of Proposition #1. Define
r2 - g
' N
. R U2/ |
Hy = N L ai!si, -

i=1

. N . R
Sont T At TN 260 2

. i -

- l=l .-

B Then

. N
c . -1/2 Ay [ .‘:.
. (A.3) HN - N .)‘ agirgy = Up(l)
- i=1 -
: .
. Proof: Define 7
R . :
- -1/ 1/2 )
- way oy =N 2T Tg e, seant’Y e, 0| R
- N . i i i i
~ 1=1 i } .'.-
- ;si: } x

'_- As in Ruppert & Carroll (1980) or Carroll & Ruppert (1982), for every _:
AN -
N %
N M 0 we have S
2 h gy () = E Q)] = o, (1) -
. NIRRT ..-:
e e
X Writing =
) M2, eant?y 2 iex,, 8)) _
. i i Y.
. o
. - =
o e, , where ¢, = f (x,, ., )
i S § Y
- NS

”
Cd -l
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we see from Proposition #1 that <
. -1 N . T ::::
(A.5) E Q) - N } a, f(x., ?)
b . i i
i=l
B
4 /2,3 4 \ . . _ 33
1 Substituting N (B-R) for A and putting (A.5) into (A.4) shows that Y,
d :
. ’
N N . '
- ‘ -1 = 1 JCa
a6y  NY2Z T 4 or e b T oa £, o 8260 ¢
. ii . i i
i=1 i=] -
AS
N
N VS
—N—l/z y a,ls.| =0 (1), N
.= i i o
i=1 \.'
completing the proof. Lemma #2 will assure us that, when dealing with o~
methods based on absolute residuals, we may replace &:
N o
-1/ Y | .
) a.lr,|
i=1 1 8’
A
by ’zl
N N . . A
N 1/2 L a,.s;| - YN ! }  a, £(xg, B)T NllZ(S-B) . o~
i=1 ot i=1 A
This makes the proofs routine, and eliminates the effect of the estimate ;E\
[SAY
of £ when y = 0, see Theorem #2. Define éf\
‘.n.‘
ve = v () = (2, ) /g, o) PG
.‘»*
a ¥ T, 2(p-1) =
c =N T ., ey ) TPz, ) ]
P i=1 (Vi XA
‘;Z 4 3 f 1 \ I p-1 o
- Ca=¥" 1 .. Qrv /e, 0 e
: P i1 tr \j/ZJ i i S
i Proof of Theorem #l1. We will study each estimator in turn, only sketching -
b,
. -
F the proof. For typing convenience, we will use the generic (&, 8), which
,
; will refer in turn to the estimator under consideration. Because of
. lLLemma #], we may assume that [ 1is known.
- ’::
s e
. a%
)
:?}fn?}?,‘; IAOREANIY LS T e T e e T e TR T e e T e ;
XA ST S N S N e R
nl-l-.&’:\‘:\AL-(i‘ sl N - ‘-i F I AN U G {a.‘) RPN ; J\d' l.‘i’.' '.{.;'. l‘.l.x'.'f.!-\’ !-f&d'dkk (L) -“' ¥
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Maximum Likelihood. Using a Taylor series and Lemma #1, we have that :‘
( \ -
N r
0=N-1/2 z ) i ]
121 £ nz,, ) 8) | 3
>
)
. —1/2 Ig 4 ri ( l o
i=1 £ h(z,, 5Vy -
~ :x
N 1 £E-£ ]
-1
- N ) l .- ) (/e v. Ty N2 . )
i=1 ' * 4 L8 -96 | -
_ N 1 (£-¢
s N-1/2 i ek o ] -% , y1/2 B ] .
i=1 i )l L - 8 J -
Thus, :::
( ? - & &
w2 — N, e2keh 3
| 6 -6 -
.
Easy algebra yields the result. 2
Unweighted squared Residuals. Again, from Lemma il, E‘_::
(.h
-1/2 A A 1 .
N ) h(z;, 8) {r, 2_¢ h(zg, O |
i=1 & v, (9)
1 .~
N ( =
sy 12 Yy £ hZ(Zi, 8) (e.2-1) ! nS
i=1 * £
i ...'
N 1) £ ¢ -~
-vt w0 | a gv,hH w2 B
i=1 L7 vy [ O .
so that o
1/2 E = é: 1 1 4
N . ==d> N0, £" K C, CiCp ) o~
8 -9 2%
o
i"
-1 -1 -1 , ,:
Since €, ° < C, " Cy3C, ", unweighted squared residuals are less efficient
than maximum likelihood. N
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Weighted Squared Residuals. Again, from Lemma #1,
5 1 {2 L6 ]
i N-l/Z N h(Zi, 8) ‘ T, £ h(Zi 8) ‘ l 1
i=1 | h(zZ;, 6 0) ] : h(z, 8 4) } L £ v, (®) J
N f 1 )
o —1/2 2
N2 ey = |
i=1 £ vy J
(5 -~¢
- ¢, N2 1
[ 6-5)
This shows, as claimed, that
£-¢)
N2 — n, P re™h.
0 -6 |

Proof of Theorem #3.

By Lemma #2, we will be able to replace ]ril by ]si| -y f(xi, B)T(é- R) .

/2

Recall that we are writing Ele| = n/e}? | and that [E|£|]2= 1-8, <&=var(lel).

For unweighted absolute residuals, from Lemma #2 and a Taylor series we

obtain

2 i | |
(z,, ®) |, J
|

—

/

N
° N—1/2 Z

1/2 N ' ~ 1
h' %z, ) {,rii nh

4wz, e)le; | -Ele])

i=1
S 1/2 :T 1/2 4
- YN ) . h'%zZ,, 8) fi(x,, B) NO(B-2)
. 1 1 i
i=1
(. )
’ ;'.-n[
_ Cz* N1/2 | ‘
P 8-9

This is the first part of Theorem #3, Noting that for weighted absolute

residuals ( \
X 1172 | s 1/2 ; ( \
~1/2 N ( h(zi, &) - i lril nhUTE, B 1
°=N T IO S { 72, 4 ! i s
i=1 | 2y Og) | { b gy By PUrv ()72,
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essentially the same application of Lemma #2 and Taylor series completes

the proof.

Proof of Theorem #2. For the symmetric case, Y = 0. From Theorem #3,

1/2 .4 . 1 -1
N (BAV-8) == N(0, £ & C2* C3*C2* )
1/2 3 .\ . -1
N (GWAV-U) = N(0, £ § Cl* ) .

Noting that ¢ = nz/(l—é) and simple algebra completes the proof.

Proof of 3.2. Detailed calculations yield

Pr(c > 0) - Pr(c < 0) =2 e ' =1

-
]

2

<
1]

Var(lcl) = 1-4 e

Ty L2
1* i n Var(v) i '

For any generalized least squares estimate of £,

N1/2 - /El/z

(- ) N-I/Z

i

1-6/2
X, [

= (l/ao) T i°

W12

Substituting into Theorem #3 yields

/2 2
N (eWAV )
N ( W;-VHi%i—EkD )
. 2 L 1 / 2 E
- _WF\ Var (v) N <
h ' 1=l -y(b,/a,) x 1-6/2
{ 0"0" i i
The result now follows immediately.
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Abstract
b o‘ﬁ

" P

. Our focus is the simple linear regression model with measurement W

errors in both variables. It is often stated that if the measurement error

F..
in x is "small", then we can ignore this error and fit the model to data :::
f_.
. using ordinary least squares. There is same ambiguity in the statistical }I:'
literature concerning the exact meaning of a "small" error. For example, .
"‘.
,: Draper and Smith (1981) state that if the measurement error variance in x "\
Y oS
y is small relative to the variability of the true x's, then "errors in the f.
g Xx's can be effectively ignored", see Montgamery & Peck (1983) for a similar
statement. Scheffe (1973) and Mandel (1984) arque for a second criterion,
which may be informally summarized that the error in x should be small
relative to (the standard deviation of the observed Y about the
line)/(slope of the line). We argue that for calibration experiments both ;:;:.
criteria are useful and important, the former for estimation of x given Y :::
and the latter for the lengths of confidence intervals for x given Y.
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o 1. Introduction o
~, There is substantial literature on the problem of precision instrument L
- calibration, see for example Scheffe (1973), Rosenblatt and Spiegelman ey
: (1981) and Mandel (1984). We will focus on such calibration when fitting a )
? straight line to a set of data in which the predictor x is measured with ?ﬁ
. error. :,-
. Recently we were asked to try to quantify what is meant by a "small" .
E measurement error in x, with the idea that, if such error were small, we :’;
could safely ignore it and procede with ordinary least squares analysis. \,
N In trying to 4o this we realized that the literature is samewhat ambiguous, J
. and in fact there are two distinct criteria used to decide when measurement _
- error in x is small. For example, Draper and Smith (1981, page 124) state 3
that if the measurement error variance in x is small relative to the . -‘
variability of the true x's themselves, then "errors in the x's can be \
effectively ignored and the usual least squares analysis performed”. This 4
- camment is echoed by Montgomery and Peck (1982, page 388). On the other ﬁ
hand, both Scheffe (1973, page 2) and Mandel (1984) use the criterion that
we can safely ignore measurement error in x if its standard deviation is :-A
small relative to the ratio "

Standard deviation of measured Y about the line.

. Slope of the line o
4 2
> The authors were working in different contexts, so it is not surprising :
; that their criteria differ. 2
\'k

<3

R

o

.
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In this paper, we point out that for calibration experiments both
. criteria are useful. The criterion used by Draper and Smith is appropriate
when the goal is estimation of intercept and slope based on the calibration
. data set, and then at the second stage for estimating the true value of x
: fram a new observed Y. The criterion of Scheffe and Mandel addresses the
: issue of lengths of confidence intervals for estimating x fram an observed
Y. If the Draper and Smith criterion is satisfied while that of Scheffe
. and Mandel is not, the effect of ignoring the measurement error in x is
essentially to cause larger confidence intervals for estimating the true
value of x fram new observed Y than is necessary.
Suppose that observed responses (Y i} are related linearly to the true
working standards {xi} through the equation

Y. = x + 8x. + €,

. i i 1 [4 i = 1'2’000N. (1.1)

Here the deviations (ei} cambine measurement errors in the response with
equation or model error, and the {Gi} are normally distributed with mean
zero and cammon variance o-é .
Rather than observing the true working standards {xi}, we observe
Xi =% + v (1.2)
where the measurement errors {vi} are assumed normally distributed with
mean zero and variance o-:‘ . In the terminology of Fuller (1986), the

equation (1.1) includes both equation error and response measurament error.

Fram now on, when we speak of measurement error we will mean measurament

» error in the true {xi }e

v

(4

N

! *-n.- e N e e N T N R e O T IO R AR ety
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Assuming the working standards (x,} are measured without error, one K
LY,
would often procede as follows. First, perform the usual least squares .':
analysis, which yields estimates (aL, 8, s o-L). A new, independent T
observation Y, is then made, and the goal is to estimate the value of x, {
e
such that Bt
e 3%
EY, = +8x, . o
The maximum likelihood estimator is
X, = (Y, - & )/8,. | (1.3) x
For confidence intervals, the Working-Hotelling 100(1-x) & interval i
(Seber (1977)) for the unknown x, is
- -~ ” -~ :\.
= . i i i i o~
I = {x: Y, is contained in the interval o + 8, x + t o R(x)}, %
(1.4 N
where tx is the 1-x/2 percentage point of the t-distribution with N-2
degrees of freedom, anmd
Re(x) =1 + N'l{l + (x-i)z/si} ' )
where x, si are given by N
A
N N 3
= _ g1\ 2 _ -1\ _ =2 i
x=N Lxl,sx-NL(x X)) . ,
1 1 -
If the calibration is to be repeated, more camplex confidence statements }::;
~
are available for those who wish to use them, see Scheffé (1973). ;::'
Draper and Smith's criterion for the severity of measureament error is )
K
%
Pl
measurement error variance in the (x.)} 02 "
a2 (1.5)
vVariation of the (x.} s
i X -
<
>
B e A L L e A
= Yy s
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Scheffé and Mandel propose that the severity of measurement error depends

on the size of
o/ og/m? . (1.6)
In the next section we discuss the criteria (1.5)-(1.6) with regard to

estimation and confidence intervals for x, given an observed Y,.

2. The Effect of Small Error

The working standards {xi} are fixed constants, and the criterion
(1.5) thus depends on the sample working standards. For large enough
samples, we will think of the mean of the (xi) as converging to My and the

variance of the {xi} also conwverging, so that (1.5) can be written as

N = o-:/si 9\ (2.1)

The least squares estimates (CL, BL) converge in pr-+wability to

(x + \ uxa/(lﬂ\), 8/(1+)\)) respectively. By centering appropriately so
that My Z 0, we see that the bias in least squares essentially depends on
the size of )\ in (2.1). When )\ is small, for the purpose of estimation,
the effect of ignoring measurement error in the true (xi) is slight.

There is no standard method to correct for measurement error when
estimating (&, 8, g om). For example, when there is no replication in
the experiment, it is custamary to assume that the ratio

9 = o2/02 (2.2)
is known, see Kendall & Stuart (1961, pages 375-387) or Fuller (1986). 1n

same applications, 6 will be known fram the physical set-up of the problem.
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For the effect of misspecifying 6, see Lakshminarayanan & Gunst (1984) and A
Ketellapper (1983). The basic danger is in thinking that 8 is larger than EZ‘:
it actually is. In practice, if 8 is not known one usually considers ’ i
. replicating the responses and/or the predictors so as to allow estimation :-
. of o, and o, see Fuller (1986) for a thorough discussion.
Regardless of whether 8 is known or replication is used, we can make C:::'
the following general qualitative statement. When )\ is small, not only Y
are the least squares estimators nearly the same as the maximum likelihood
estimators, but in particular the least squares estimators are .
‘ approximately unbiased as discussed previously. The story is considerably .::
different when we turn to confidence intervals. Define E‘::
; L, = length of the confidence interval for x, given Y, taking "
into account the measurement error in {xi}. :
L, = length of the confidence interval for x, ignoring the
measurement error in the {xi). e
If we assume that the sample sizes are large enough and, if replication is o
used, there are sufficient degrees of freedom in the replication, in
A Appendix A we verify that when )\ is small the ratio of the confidence i:'.:
3 interval lengths is approximately o
. i L T ) (2.3) .
! S s
Y Al
y The reason that (2.3) holds is that, as seen in (1.4), the length L, of :\
: confidence interval ignoring measurement error is essentially proportional E;

3 to Cp which converges in probabilty to (o-é + Bzo:l)’, while the length L1 N

t
i

e & &4
o, e f.f‘./fl'

™y
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is proportional to an estimate of Ogi the ratio of these two lengths is

(2.3).

N Equation (2.3) verifies the criterion of Scheffe and Mandel that for

confidence intervals, we can ignore measurement error in the working

2
m

standards only if the measurement error has variance o-_ small relative to

o-é/nz. In the next section we provide an example where the criterion

(1.5) mentioned by Draper & Smith is small but the Scheffe and Mandel

criterion (1.6) is large.

3. An Example
In Table 1 we list a subset of the data inwvestigated by Lechner, Reewve

& Spiegelman (1982). It is not our purpose to provide a definitive

analysis of these data. Rather, we use the data only to provide a means of

exploring the effect of ignoring small measurement error, especially

through the increased length ratio (2.3). We assume a straight line fit

-~

(1.1) to the data. We find that x = -291.49, BL = 2346.64 and oy, = 1.64.

Fram discussion with the investigators it was thought that n am o are

€
is made up of both

of the same order of magnitude. However, since o

€
response measurement error and =y’ 1 error, for this illustration we

decided to be rather conservative as suggested by Lakshminarayanan & Gunst

(1984) and Ketellapper (1983) and set € = 0.001 in (2.2). Following

Kendall & Stuart (1961), the maximum likelihood estimators of (x,8,0)

assuming 8 is known are given by



-~

2 -1.2 2 ~1.2,2 -1.2 %
(SY-G Sx)+{(SY-0 Sx) + 40 SYX}

5%

. 10 .
o = 8718y - 5,,/8,1,

*

@D )

where
N
2 _1\ o2
i=1
N
l —_—
2 \ =.2
S, =— (Y.-Y)
Y N L i
i=1
N
i
SYX=; /_ (xi-X)(Yi-Y).

-
]
[

It is known that the maximum likelihood estimator for o is biased even in

larger samples, and it is custamary to make the correction

- -~

Omx = 20,

We found that

B, = 2346.64, o, = 6.77 > 1074

Making the rough approximations

828y, 0 T O 02T .00002  and
0')2( < Sample variance of observed X's - o-:l z 0.57,

we find that \ < 0.001. Since )\ is very small and 8, < 8,, we conclude

that for purposes of estimation, measurement error in the {xi} can be
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effectively ignored. However, the ratio of the lengths of the confidence
intervals for x, is approximately
L - 1+e8dt sz,
2’71
This large ratio emphasizes our point that the definition of "small
measurement error” must depend on whether one is interested in estimation

or confidence intervals.

4. Conclusion

We have shown that, under the ideal conditions of a straight line
model and a fairly large-sized working sample, ignoring measurement errors
in x which are "small" relative to the usual estimation criterion (2.1) can
result in calibration confidence intervals which are much larger than
necessary. For confidence intervals, it is more sensible to judge
measurement error size on the basis of both (1.5) and (2.3). Ignoring the
measurement error in the true working standards (xi) will cause an increase
in confidence interval length on the order of (2.3).

We finish by emphasizing that using measurement error techniques to
obtain shorter calibration confidence intervals requires that equation
(1.1) should hold. While least square confidence intervals can be very
conservative in examples such as we have studied, they are more robust
against small model misspecifications. Small perturbations from the
straight-line fit can significantly alter the coverage probabilities of the
measurement error confidence interval I1 without greatly affecting the

coverage of the least squares intervals.
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Appendix A
In this appendix, we verify the appraximation (2.3). Wwhile a precise

large-sample analysis is routine, it is also notationally quite cumbersame.

The essential ideas are perhaps easier to understand through the following
8 heuristic analysis. Suppose that N is large and that )\ in (2.1) is small.
i Assuming that

(A.1) ol/ol =8 known,

then maximum likelihood estimates (a,, 8,) can be formed which are

: consistent for (x,8), see Fuller (1986). Under the assumption of small \

and large sample size N, we have

x, =X, S x; B T B8, <8

- . _ 2 2 2%
R(x) Z 1; o ~ O O, - e

Here o, is the usual consistent estimate of oo under the assumption

(2,2). Taking into account the measurement error in {xi} and using (x,,

-~ -~

B, crm*), within our heuristic framework the appropriate Working-Hotelling

confidence interval for x, is appraximately

L ={x: Y, €x, +8, %2 } o,

x Tm*
where z - is the 1-&/2 standard nommal percentage point. The usual

interval formed by ignoring measurement error is approximalely

Z“ O'L

This latter interval is strictly appropriate not for x, but rather for

12={x:Y,eo<L+Bth | S

X, = x, + v.. The length of the confidence interval I, taking into account
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measurement error in {xi} is, for large samples, proportional to

(A.2) 2z o—e/ﬂ

while that for the usual least squares analysis is proportional to
- 2 2,4

(A.3) L, = 2 Zcx(o'e + B on ) /8 .

The ratio of these lengths is, noting (A.l),

L

(A.4) 2 -1+ CWICIPNER
n i
1

v 3y
S,
.
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